

URWPGSim2D Developer Guide
V 1.2 Revised 20120101

Intelligent Control Laboratory, Peking University

Jan. 2012

Index
1. Summary ... 错误！未定义书签。

1.1. Target Reader .. 错误！未定义书签。

1.2. Glossary .. 错误！未定义书签。

2. Development Environment ... 错误！未定义书签。

2.1. Hardware Environment ... 错误！未定义书签。

2.2. Software Environment .. 错误！未定义书签。

2.3. Set Up Standard Development Environment 错误！未定义书签。

2.4. Start Development ... 错误！未定义书签。

2.5. Supplement .. 错误！未定义书签。

3. General Design .. 错误！未定义书签。

3.1. Functional Design ... 错误！未定义书签。

3.2. VS2008 Solution & Project Structure ... 3

3.3. Whole Structure .. 错误！未定义书签。

3.4. Server Structure ... 错误！未定义书签。

3.4.1. Simulation Mission As the Center ... 7

3.4.2. Simulation Period As the Main Line ... 8

3.5. Version Control ... 错误！未定义书签。

3.5.1. Source Code Management .. 错误！未定义书签。

3.5.2. Product Management .. 错误！未定义书签。

4. Strategy Progam .. 错误！未定义书签。

4.1. What is Strategy .. 错误！未定义书签。

4.2. How to Call the Strategy ... 错误！未定义书签。

4.2.1. Local Mode ... 错误！未定义书签。

4.2.2. Remote Mode .. 9

4.2.3. Asynchronous Call .. 9

4.3. Program Guide .. 错误！未定义书签。

4.3.1. About Program .. 错误！未定义书签。

I

II

4.3.2. About Business .. 错误！未定义书签。

4.3.3. About Debug ... 错误！未定义书签。

5. Standard Functions .. 错误！未定义书签。

5.1. PoseToPose ... 18

5.1.1. Function Introduction .. 错误！未定义书签。

5.1.2. Parameter Description ... 错误！未定义书签。

5.1.3. Calling Method .. 错误！未定义书签。

5.2. Dribble .. 19

5.2.1. Function Introduction .. 错误！未定义书签。

5.2.2. Parameter Description ... 错误！未定义书签。

5.2.3. Calling Method .. 错误！未定义书签。

1. Summary

Please download the latest version of the guide from the official website of China
Underwater Robot Games (http://robot.pku.edu.cn).

1.1. Target Reader

The guide is provided for the potential designer, developer, tester and maintainer of the
software URWPGSim2D and the strategy programmer who participates the 2D simulation game
of China Underwater Robot Games. All the technical details related to URWPGSim2D are kept
here as many as possible.

1.2. Glossary

1. URWPGSim2D：2 Dimension Edition of Underwater Robot Water Polo Game Simulator

2. MRDS：Microsoft Robotics Developer Studio

3. CCR：Concurrency and Coordination Runtime, a technical and base software library to solve
the concurrency problem in the development of robot software.

4. DSS：Decentralized Software Services，a technical and base software library to solve the
asynchronous problem in the development of robot software.

5. Simulation Mission：Mission, a simulation game or experimental project.

6. Simulation Environment：SimEnvironment，the virtual environment for the simulation
mission, including simulation field(the pool for a simulation game or experiment), simulate
water polo(none or several), simulate rectangular obstacle(none or several), simulate round
obstacle(none or several).

7. Simulation RoboFish：RoboFish，the robotic fish for a simulation game or experiment.

8. Simulation Loop：the course of executing all the simulation actions sequently for one time

9. Simulation Period：the time for the simulation loop

10. Simulation Action：the simulation actions include the decisions for the robotic fish, the
kinematical computation of all the moveable objects, the collision process of all the objects.

2. Development Environment

2.1. Hardware Environment

URWPGSim2D can be developed on the PC or workstation with the hardware configuration
requirements shown in table 2-1.

Table 2-1 Hardware Configuration for running URWPGSim2D

Main
Components

Minimum Configuration Recommended Configuration

1

CPU Intel P4 2.0GHz or similar AMD CPU Intel E7300 2.66GHz or higher

Memory 256MB 2GB or more

Video Card Support DirectX 9.0，Pixel Shader 3.0，video memory128M or more

Harddisk 10GB 80GB or more

2.2. Software Environment

OS：Windows XP Professional SP3，Windows Vista or Windows 7。

.Net Framework：.Net Framework 3.5 with SP1。

IDE：Microsoft Visual Studio Team System 2008 Team Suite with SP1，or Microsoft Visual
Studio 2008 Professional with SP1。

Program Language：C# V3.0。

MRDS：Microsoft Robotics Developer Studio 2008 R3。

Accessory：Microsoft XNA Framework Redistributable 3.1，Microsoft Excel 2003 Com
Library。

2.3. Set Up Standard Development Environment

The software for setting up standard development environment are provided on the official
website of Underwater Robot Game Of China.

1. Install Windows XP Professional SP3 on the PC or workstation.

2. Install DotNet3.5SP1 and XNA3.1 with the default setting.

3. Install Microsoft Visual Studio Team System 2008 Team Suite and SP1 with the relevant
components for C# development.

4. Install TortoiseSVN1.6.5和VisualSVN package of VS2008 with the default setting.

2.4. Start Development

Get the SVN address of URWPGSim2D source code and corresponding username and
password from the official website of Underwater Robot Game Of China. Select “Get Solution
from Subversion” under the menu “VisualSVN” in VS2008, input the SVN address and input the
username and password in the pop-up dialog box to get the latest version of source code.

To facilitate the debugging with the shortcut key in Visual Studio, ConductorSvr need be set
as startup project.

2.5. Supplement

MRDS need not to be installed. All the DLL files of MRDS used in URWPGSim2D have
been included in the directory URWPGSim2D\bin of the source code package.

2

http://robot.pku.edu.cn/
http://robot.pku.edu.cn/software/simulation/dotnetfx35WithSP1ConnectionNotNeeded.rar
http://robot.pku.edu.cn/software/simulation/xnafx31_redist.msi
http://www.microsoft.com/downloads/zh-cn/details.aspx?FamilyID=D95598D7-AA6E-4F24-82E3-81570C5384CB
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=27673C47-B3B5-4C67-BD99-84E525B5CE61
http://robot.pku.edu.cn/software/simulation/TortoiseSVN-1.6.5.16974-win32-svn-1.6.5.rar
http://robot.pku.edu.cn/software/simulation/VisualSVN-1.7.6Cracked.rar
http://robot.pku.edu.cn/

3. General Design

3.1. Functional Design

URWPGSim2D is mainly used as the platform of underwater robot games and scientific
research to facilitate the extension of the game and experimental project and the independent
development of strategy algorithm.

URWPGSim2D includes two parts, URWPGSim2DServer and URWPGSim2DClient.
URWPGSim2DServer simulates the underwater environment, controls and shows the simulation
and result, sends real-time simulation environment and process information. Semi-distributed
client simulates the team of underwater robots, while fully distributed client simulates one
underwater robot, both loading the strategy of the game or experiment, complete the process of
decision computation and sending decisions to the server.

3.2. VS2008 Solution & Project Struction

URWPGSim2D is generated from the VS2008 C# Solution name “URWPGSim2D.sln”,
which includes at least 9 projects (possible to be extended) and the generating order decided by
their dependence, is shown as Table 3-1. All the projects have the key file named
“URWPGSim2D.snk” for the signature and generate a program set with strong names.

URWPGSim2D1.0.11.31 includes 9 private components, MRDS and other third-party
components.

Table 3-1 URWPGSim2D Private Components

Component
Corresponding

Files
Description

Corresponding
Project

Dependent
Components

Core
URWPGSim2D.
Core.dll

Kinematics and dynamics
computation module;
random disturbance module;
collision response module

Core none

Common
URWPGSim2D.
Common.dll 、

config.xml

Simulation robotic fish
module; simulation
environment (field, water
polo, obstacle, channel, etc);
simulation mission module;
collision detection module;
system configuration
module; auxiliary function
module

Common Core

Match
URWPGSim2D.
Match.dll

Specific simulation mission
realization module (adding

Match
Core 、

Common

3

game projects)

StrategyLo
ader

URWPGSim2D.
StrategyLoader.
dll

Auxiliary module for
realization of loading
strategy dynamically

StrategyLoader Common

Gadget
URWPGSim2D.
Gadget.dll

Auxiliary module for
drawing track and displaying
real-time information

Gadget none

Sim2DSvr

Sim2DSvr.mani
fest.xml 、

URWPGSim2D.
Sim2DSvr.Y201
0.M11.dll 、

URWPGSim2D.
Sim2DSvr.Y201
0.M11.Proxy.dll
、

URWPGSim2D.
Sim2DSvr.Y201
0.M11.Transfor
m.dll

DSS services and interface
module for the server

Sim2DSvr

Common 、

Match 、

StrategyLoad
er、Gadget

Sim2DClt

Sim2DClt.manif
est.xml 、

URWPGSim2D.
Sim2DClt.Y201
0.M11.dll 、

URWPGSim2D.
Sim2DClt.Y201
0.M11.Proxy.dll
、

URWPGSim2D.
Sim2DClt.Y201
0.M11.Transfor
m.dll

DSS services and interface
module for the client

Sim2DClt

Common 、

Sim2DSvr 、

StrategyLoad
er

ConductorS
vr

URWPGSim2D
Server.exe

Boot loader for the server ConductorSvr Sim2DSvr

Conductor
Clt

URWPGSim2D
Client.exe

Boot loader for the client ConductorClt Sim2DClt

The folder of URWPGSim2D Solution is named URWPGSim2D in default and can be
4

renamed as you wish. The Solution includes 9 projects, all the folders of projects are put under the
folder of Solution. Besides, there are two more folders, URWPGSim2D for output and Strategy
for strategies.

In the deployment design, URWPGSim2D is totally green without changing the registry and
copying any file to the system folder. All the third-party components needed are put in the
program folder and can be used immediately after being copied. The output folder of
URWPGSim2D has a subfolder “bin” for running the program. The folder “bin” can not be
renamed because of the operation mechanism of MRDS DSS service. The DSS service component
generates .dll files which are deployed in the subfolder “bin” of the installation folder of MRDS
and loaded by DssHost.exe in the folder “bin”. When loading, DssHost.exe will search for the
folder “store” among the superior folders of “bin” to query for the relevant Cache information. If
none, a new folder will be created automatically. Thus there must be a subfolder “bin” in the
output folder “URWPGSim2D”.

The output folder of all the projects is set as “..\URWPGSim2D\bin”, in which all the
third-party components are put. The property of “Copy Local” in the referenced assembly (one .dll
file here) of all the projects is set as “False”. So the channeles of the referenced assembly of all the
projects are fixed to the relative directory “..\URWPGSim2D\bin”. The reference will be updated
in time for any new versions.

The folder “Strategy” is for Strategy Solution, which provides most strategy module for
simulation missions. To program the strategy of simulation game or self-designed experiment, you
can use the strategy of old project directly or add the strategy of new project.

3.3. Overall Structure

Server Service
(Sim2DSvr)

Server UI
(ServerControlBoard)

CCR Port

Client Service
(Sim2DClt)

Client UI
(ClientControlBoard)

CCR Port

DSS Port

Figure 3-1 URWPGSim2D Overall Structure

5

3.4. Server Structure

Figure 3-2 URWPGSim2D Server Module Structure

M
is

si
on

Se
rv

er
 S

er
vi

ce

(S
im

2D
Sv

r)

Se
rv

er
 U

I
(S

er
ve

rC
on

tr
ol

B
oa

rd
)

C
C

R
Po

rt

IM
is

si
on

IS
im

En
vi

ro
nm

en
t

Si
m

En
vi

ro
nm

en
t

Fi
el

d
Li

st
<B

al
l>

Li

st
<R

ou
nd

ed
 O

bs
ta

bl
ce

>

Li
st

<R
et

an
gu

la
r O

bs
ta

bl
ce

>

Li
st

<C
ha

nn
el

>

Li
st

<R
ob

oF
is

h>

R
ob

oF
is

h
IR

ob
oF

is
h

Se
tM

is
si

on

Se
tD

ec
is

io
ns

To
Fi

sh
es

Pr
oc

es
sF

is
hL

oc
om

ot
io

n

Pr
oc

es
sB

al
lL

oc
om

ot
io

n

Pr
oc

es
sC

ol
lis

io
n

Pr
oc

es
sC

on
tr

ol
R

ul
es

D
ra

w

M
at

ch
1V

1

M
at

ch
3V

3

…
…

Pr

oc
es

sC
on

tr
ol

R
ul

es

Se
tM

is
si

on

6

3.4.1. Simulation Mission As the Center

URWPGSim2D module structure is centralized with simulation mission as shown in figure
3-2.

URWPGSim2D is designed with object-oriented thought. From the respect of object
modeling, there are 3 models including simulation robotic fish, simulation environment and
simulation mission (game or experiment project) and simulation mission is the center. The
simulation mission includes the team list of simulation robotic fish and simulation environment.
All 3 models have top models respectively, base class RoboFish of simulation robotic fish,
SimEnvironmen of simulation environment and Mission of simulation mission. Class RoboFish
defines common characteristics (represented by class properties) and common behaviors
(represented by class method) of simulation robotic fish needed in specific simulation mission.
Class SimEnvironmen defines common characteristics of simulation environment needed in
specific simulation mission. Class Mission defines common characteristics and common
behaviors of specific simulation mission.

The common behaviors of simulation robotic fish and simulation environment are defined
rarely or unnecessarily, while those of simulation mission are defined a lot. Though the base class
RoboFish and SimEnvironment realize the interfaces IRoboFish and ISimEnvironment in form,
there is no defined method on both interfaces. The base class Mission realizes the interface
IMission with a number of defined methods. Some methods can be realized directly in the base
class Mission, while the other only can be provided virtual functions and realized by override in
the specific simulation mission class.

A generic class Team<TFish> is defined for the formation of robotic fish. In TFish, there are
one list （List<TFish>）member Fishes for saving all robotic fish objects of the team and one team
common parameter（TeamCommonPara）member Para for saving all characteristic parameters of
the team (e.g. team name, number of simulation robotic fish, present score).

The simulation environment includes several elements, such as simulation field, simulation
water polo, simulation obstacle and simulation channel. In the base class of simulation
environment SimEnvironment, there are one simulation field (Field) class member FieldInfo for
saving simulation field objects, one simulation water polo (Ball) class list（List<Ball>）member
Balls for saving all simulation water polo objects in current simulation environment, one
simulation round obstacle (RoundedObstacle) class list （List<RoundedObstacle>）member
ObstaclesRound for saving all simulation round obstacle in current simulation environment, one
simulation rectangular obstacle (RectangularObstacle) class list （List<RectangularObstacle>）
member ObstaclesRect for saving all simulation rectangular obstacle in current simulation
environment, and one simulation channel (Channel) class list （List<Channel>）member Channels
for saving all simulation channel objects in current simulation environment.(Note: In fact, the
concept of simulation channel has never been used and can be substitute by two paralleled
simulation rectangular obstacles. So the concept of simulation channel is abandoned.)

Simulation mission class Mission includes one simulation robotic fish base class RoboFish
team list （List<Team<RoboFish>>） member TeamsRef, one simulation environment base class

7

SimEnvironment member EnvRef and one simulation mission common parameter
MissionCommonPara class member CommonPara.

Specific simulation mission class (e.g. simulation mission class of 3v3 match Match3V3)
inherits base class Mission. Correspondingly, specific simulation robotic fish class (e.g. Fish3V3)
inherits base class RoboFish and specific simulation environment class (e.g. Fish3V3) inherits
base class SimEnvironment.

3.4.2. Simulation Period As the Main Line

After simulation mission start running, simulation period will continue periodically unless set
simulation time runs out or paused or stopped manually or by the program.

The simulation period will take all simulation actions according to the following procedure.

1. To allocate decision valueSetDecisionsToFishes;

2. To compute kinematic parameters ProcessFishLocomotion of simulation robotic fish;

3. To compute kinematic parameters ProcessBallLocomotion of simulation water polo;

4. To process collision detection and response ProcessCollision of all objects in the field;

5. To process specific rules ProcessControlRules of current simulation mission, such as foul and
score;

6. To process local and remote strategy calling;

7. To process interface dynamic data update.

3.5. Version Control

3.5.1. Source Code Management

In the development of URWPGSim2D, SVN is used for source code version control. SVN
server installs VisualSVN-Server-2.0.7, while SVN client installs TortoiseSVN-1.6.5
（ TortoiseSVN-1.6.5.16974-win32-svn-1.6.5 ） with Visual Studio 2008 package
VisualSVN-1.7.6.

3.5.2. Product Management

URWPGSim2D product version number includes 4 sections “Majo.Minor.[Revision[.Build]]”.
Major represents primary version number and starts from 1, which will be added by 1 for each
time when there are great changes of products function. Minor represents secondary version
number and starts from 0, which will be added by 1 for each time when there are big changes of
products function. Revision represents revision number, which is the Revision number of source
code library of SVN server. Build is the generation date of 6 digits, made of YYMMDD. For
example, 1.1.103.110713 represents the product version generates from the source code of
Revision number 103 in July 13, 2011 with no great change and one big change of function.

8

4. Strategy Program

4.1. What is Strategy

In terms of content, strategy is the algorithm code used to control simulation robotic fish
participating in current simulation mission. In terms of form, strategy is a .dll file able to load in
the server and client.

4.2. How to Call the Strategy

4.2.1. Local Mode

Select “Local” from “Referee Strategy” in the interface of the server URWPGSim2DServer.
Under local mode, the strategies of all teams in simulation mission are loaded in the server and run
with URWPGSim2DServer.exe in the same process space. As simulation period runs in the
process space of URWPGSim2DServer.exe, all strategies and simulation period run in the same
process space. Therefore all control instructions of simulation robotic fish and operation
instructions of simulation period of all teams are from the same process. So, local mode is a
centralized simulation mode.

4.2.2. Remote Mode

Select “Remote” from “Referee Strategy” in the interface of the server
URWPGSim2DServer. Under remote mode, the number of URWPGSim2DClient.exe processes
must equal to the number of teams in the simulation mission for loading the strategy of each team.
These processes can run in the same computer or different computers within one LAN
(theoretically workable in WAN, but not tested yet). The strategy of each team and
URWPGSim2DClient.exe process that loads it are running in the same process space. Therefore
the control instructions of all simulation robotic fish of each team are independent to simulation
period operation instructions. The control instructions of simulation robotic fish of all teams are
independent to each other, while those of one team are from the same process. So, remote mode is
a semi-distribution simulation mode.

If process URWPGSim2DClient.exe and URWPGSim2DServer.exe are running in different
computers, the configuration “<dssp:Service>http://localhost:50000/Sim2DSvr</dssp:Service>”
in the file “../URWPGSim2D/bin/Sim2DClt.manifest.xml” of the computer that
URWPGSim2DClient.exe is running needs to be changed from localhost to the IP or hostname of
the computer that URWPGSim2DServer.exe is running on.

4.2.3. Asynchronous Call

The asynchronous manner is used in both local mode and remote mode.

In local mode, the calling code is in the method Sim2DSvrService.NextStepProcessDetail
that the process URWPGSim2DServer.exe of the server launches one Arbiter.Receiver for each
team to call the thread in CCR threadpool asynchronously and process decision algorithm for
decision value. GetLocalDecision and simulation period are asynchronous. The process result is
that decision array is filled in the public space DecisionRef and simulation period distributes

9

recent decision value from DecisionRef to corresponding robotic fish. With regard to the
simulation mission of two or more teams involved, the process order of GetLocalDecision for
each team in one simulation period is uncertain.

In remote mode, complicated CCR and DSS communication process are related. Call entry
code is in the method Sim2DSvrService.NextStepProcessDetail that the process
URWPGSim2DServer.ex of the server calls Sim2DSvrService.MissionParaNotification
asynchronously by SpawnIterator and informs Mission object values of current simulation mission
to all clients which includes all simulation environment and process information. After service
instance Sim2DCltServic of process URWPGSim2DClient.exe on the client receives
MissionParaNotification, it calls Sim2DCltService.AnnounceDecisionToServer asynchronously
by SpawnIterator and process to get decision array which will be sent to the server as
ClientAnnounceDecision message. After service instance Sim2DSvrService of process
URWPGSim2DServer.exe on the server receives ClientAnnounceDecision, CRC scheduler will
call ClientAnnounceDecisionHandler with threads in the thread pool asynchronously and fill the
received decision array in the public space DecisionRef for the simulation period to distribute to
corresponding simulation robotic fish by SetDecisionsToFishes. The aforementioned course does
not include that the client initiate to connect the server and request for establishing
Subscribe/Notify relation with the server after booting. There is another introduction on the
communication details related to URWPGSim2D.

4.3. Program Guide

以 下 描 述 中 %URWPGSim2D% 为 URWPGSim2D Solution Directory ， 如 D:\My
Documents\Visual Studio 2008\Projects\URWPGSim2D。

In the following description, %URWPGSim2D% means URWPGSim2D Solution Directory,
e.g. D:\My Documents\Visual Studio 2008\Projects\URWPGSim2D.

4.3.1. About Program

To program a strategy, you need creat a VS2008 project of Windows Class Library type and
corresponding Solution with C# program language based on .Net Framework 3.5 first.

The namespace of the project must be URWPGSim2D.Strategy. There must be a class
named Strategy, which must inherit MarshalByRefObject class and support IStrategy interface
for realizing GetTeamName and GetDecision method. The specific information of the interface
refers to the program structure in the 7th items. At least 4 Reference, Microsoft.Dss.Base.dll,
Microsoft.Xna.Framework.dll, URWPGSim2D.Common.dll and URWPGSim2D.StrategyLoader
should be added to the project.

1. Strategy Solution Strategy.sln in the folder of %URWPGSim2D%\Strategy\ can be used
directly. Either strategy project is added to Strategy Solution, or existing Strategy template
Project can be used directly.

2. New Solution can be created with new strategy Project (e.g. Strategy3VS3). The Project
should be put in the subfolder of Solution which can be put anywhere with any name but
recommended name is Strategy.

10

3. Modify Project properties. After Strategy Project is created, e.g. Strategy3VS3 for
Match3VS3 simulation mission, some Project properties need to be modified. In Solution
Browser, select Strategy Project, e.g. Strategy3VS3, click right mouse button and select
Properties. In popup page, change the option Application Default namespace to
URWPGSim2D.Strategy.

4. Modify Class name. Rename default cs file , e.g. Class1.cs, to StrategyProjectName.cs, e.g.
Strategy3VS3.cs. Reopen the file, and rename namespace, e.g. ClassLibrary1, to
URWPGSim2D.Strategy and class, e.g. Class1 to Strategy:MarshalByRefObject, IStrategy.

5. Class Strategy must reload MarshalByRefObject 的 InitializeLifetimeService method and
realize with one statement “return null” to avoid timeout problems when Strategy object is
loaded outside the field of main program. Otherwise, Strategy object will be destroyed
automatically if there is a badly long time-out. After the time-out, the strategy does not exist.

6. The instance of library Strategy will be stored in the memory after loaded only if strategy is
changed during the simulation mission. Thus, private variants can be defined to save
necessary information.

7. Recommended program structure is as the following.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using xna = Microsoft.Xna.Framework;

using URWPGSim2D.Common;

using URWPGSim2D.StrategyLoader;

namespace URWPGSim2D.Strategy

{

 public class Strategy : MarshalByRefObject, IStrategy

 {

 #region reserved code never be changed or removed

 /// <summary>

 /// override the InitializeLifetimeService to return null instead of a valid ILease implementation

 /// to ensure this type of remote object never dies

 /// </summary>

 /// <returns>null</returns>

 public override object InitializeLifetimeService()

 {

 return null; // makes the object live indefinitely

 }

 #endregion

11

 /// <summary>

 /// 决策类当前对象对应的仿真使命参与队伍的决策数组引用 第一次调用GetDecision时分配空间

 /// </summary>

 private Decision[] decisions = null;

 /// <summary>

 /// get team name: set team name here

 /// </summary>

 /// <returns>teamname</returns>

 public string GetTeamName()

 {

 return "3VS3 Test Team";

 }

 /// <summary>

 /// get the decision data array of current simulation mission (game) and 获取当前仿真使命（比赛项目）

当前队伍所有仿真机器鱼的决策数据构成的数组

 /// </summary>

 /// <param name="mission">服务端当前运行着的仿真使命 Mission 对象</param>

 /// <param name="teamId">当前队伍在服务端运行着的仿真使命中所处的编号

 /// 用于作为索引访问 Mission 对象的 TeamsRef 队伍列表中代表当前队伍的元素</param>

 /// <returns>当前队伍所有仿真机器鱼的决策数据构成的 Decision 数组对象</returns>

 public Decision[] GetDecision(Mission mission, int teamId)

 {

 // 决策类当前对象第一次调用 GetDecision 时 Decision 数组引用为 null

 if (decisions == null)

 {// 根据决策类当前对象对应的仿真使命参与队伍仿真机器鱼的数量分配决策数组空间

 decisions = new Decision[mission.CommonPara.FishCntPerTeam];

 }

 #region decision computation that is realized by your team

 #endregion

 // codes start from here.

 #endregion

 return decisions;

 }

}

}

8. GetTeamName interface is used to set team name by substituting “3VS3 Test Team” with
your team name.

9. GetDecision interface is used to generate decision data of Strategy objects for all simulation

12

robotic i-th fishn corresponding team. If the decision-making is complicate, it is suggested to
encapsulating various subprocedure to Private method of Class Strategy which can be called
by GetDecision or subprocedure.

10. Since class Strategy called 2 components, URWPGSim2D.Common.dll and
URWPGSim2D.StrategyLoader, both of which have strong name (see MSDN for details
about strong name). So if main program URWPGSim2D (including 2 aforementioned
components) updates, dll file for Strategy must be added to corresponding class Strategy
again and regenerated before normal loading.

4.3.2. About Business

1. The direct target of strategy programming is to fill in current team decision array “decisions”
with decision values, i.e., to generate control instructions for all simulation robotic fish of the
team in simulation mission corresponding to current objects of class Strategy. The control
instruction of simulation robotic i-th fishs a value of Decision type.

2. Data type Decision includes 2 int members: VCode for velocity gear and TCode for turning
gera.

3. VCode values range from 0 to 14, 15 integers in total. Each integer corresponds to one
velocity, which increases but not strictly. According to speed data from experiments, the
velocity of some gear is slower than lower one.

4. TCode values range from 0 to 14, 15 integers in total. Each integer corresponds to one
angular velocity. The integer 7 corresponds to swimming straight without any angular
velocity, while 6 to 0 and 8 to 14 corresponds to turning left and right respectively with
increasing angular velocity.

5. Any gear shift of velocity or turning needs several simulation periods to realize stable linear
or angular velocity. At present, kinematics computation decides that stable linear or angular
velocity is close to but less than the value of corresponding gear.

6. Simulation robotic i-th fishs prohibited to spin on the spot, i.e. it is impossible that linear
velocity of simulation robotic i-th fishs zero while angular velocity is not. The platform has
set a rule that if linear velocity is slower than stable velocity of gear 1, angular velocity will
be se to zero forcefully. Don’t reduce linear velocity of simulation robotic fish to 0 and only
give it angular velocity for turning around, which will make it stay still.

7. The field coordinate system, point and vector are defined as follows. The origin of the
coordinate plane is the center of the rectangular field with right as plus X axis and down as
plus Z axis. From plus X axis to minus X axis, the angle varies from 0 toπ clockwise and
from 0 to -π counterclockwise. In consideration of the consistence with 3-dimensional
coordinate system of MRDS, the horizontal plane is represented by XOZ, while Y axis is the
third dimension. The definitions of vector and point are of Vector3 type in library XNA with
X and Z dimensions in use and Y dimension set to 0. In the transition of 2-dimensional points
and vectors to 3-dimensional ones, X in 2D corresponds to X in 3D while Y in 2D to Z in 3D.

13

8. The strategy of antagonistic simulation mission must decide its own half and target goal. The
behavior and related decision algorithm of simulation robotic fish are designed according to
target goal.

9. The integer-type parameter teamID of GetDecision interface represents the serial number of
the team corresponding to current Strategy object in simulation mission running on the server
(starting from 0). The initial value of teamID is decided by the order of loading strategy in
Local mode and the sequence of client launching in Remote mode. After 2 teams in
antagonistic simulation mission change ends, teamID will be exchanged by half handling
code of the server or client strategy calling entry and transmitted to GetDecision.

10. The mission-type parameter mission of GetDecision interface include all public information
of current simulation mission running on the server for strategy. mission. TeamsRef[teamId],
pointing to Team<RoboFish> objects of the team in corresponding simulation mission of
current strategy objects, can be used for visiting all public information of the team and its
simulation robotic fish. In an antagonistic simulation mission of 2 teams,
mission.TeamsRef[(1 + teamId) % 2] which points to Team<RoboFish> objects of opponent
team, can be used to visit all public information of the other team and its simulation robotic
fish.

11. Table 4-1 includes all parameters which can be used in the strategy. The reference of all
members starts with “mission.”, e.g. mission.CommonPara.TeamCount, among which
members of “CommonPara.*” class represent the names of several following members, e.g.
CommonPara.MsPerPeriod. The complete reference is mission.CommonPara.MsPerPeriod.
There are other types of members, such as MissionCommonPara, Team<RoboFish>,
TeamCommonPara, RoboFish, Field, RetangularObstacle, RoundedObstacle, which are not
open to strategy but related to server processing. Do not use them.

Table 4-1 All parameters for Strategy

Member name Type Meaning

CommonPara MissionCommonPara Public parameter of current simulation mission

CommonPara.*

FishCntPerTeam int Number of simulation robotic fish of each team

MsPerPeriod int Milliseconds of simulation period

RemainingPeriods int Simulation periods left

TeamCount int Number of teams in current simulation mission

TotalSeconds int Seconds of running time in current simulation mission

TeamsRef List<Team<RoboFish>> Team list of current simulation mission

TeamsRef[teamId] Team<RoboFish>
Team in the simulation mission corresponding to current

object of decision class (current team)

TeamsRef[teamId]

.*

Para TeamCommonPara Public parameter of current team

14

Member name Type Meaning

Fishes List<RoboFish> Simulation robotic fish list of current team

TeamsRef[teamId]

.Para.*

FishCount int
Number of simulation robotic fish of current team

（equaling to CommonPara.FishCntPerTeam）

MyHalfCourt HalfCourt（enum）
Half field of current team

（HalfCourt.LEFT(0) / Halft.RIGHT(1)）

Score int Current team score

Name string Current team name

TeamsRef[teamId]

.Fishes[i].*

PositionMm xna.Vector3
Position of i-th fish of current team (center of fish

fore-end rigid body)

BodyDirectionRad float
Orientation of i-th fish of current team(direction of long

side of fish fore-end rigid body)

VelocityMmPs float Velocity of i-th fish of current team

VelocityDirectionR

ad
float

Velocity direction of i-th fish of current team (the same as

BodyDirectionRa)

AngularVelocityRa

dPs
float Angular velocity of i-th fish of current team

BodyLength int Fore-end rigid body length of i-th fish of current team

BodyWidth int Fore-end rigid body width of i-th fish of current team

CollisionModelRad

iusMm
int

Radius of external round model of i-th fish of current team

in collision detection

CollisionModelBod

yRadiusMm
int

Radius of circumcircle of fore-end rectangular rigid body

of i-th fish of current team

CollisionModelTail

RadiusMm
int

Radius of tail round model of i-th fish of current team in

collision detection

PolygonVertices[0] xna.Vector3 Position of head of i-th fish of current team

EnvRef SimEnvironment Environment object of current simulation mission

EnvRef.*

FeildInfo Field Simulation field object of current simulation mission

Balls List<Ball>
All simulation water polo objects of current simulation

mission

Balls[i] Ball i-th simulation water polo of current simulation mission

ObstaclesRect List<RetangularObstacle>
List of all simulation rectangular obstacles of current

simulation mission

ObstaclesRect[i] RetangularObstacle i-th simulation rectangular obstacle object of current

15

Member name Type Meaning

simulation mission

ObstaclesRound List<RoundedObstacle>
List of all simulation round obstacles of current simulation

mission

ObstaclesRound[i] RoundedObstacle
i-th simulation round obstacle object of current simulation

mission

EnvRef.FieldInfo.

*

FieldLengthXMm int Length of current simulation field in X direction

FieldLengthZMm int Length of current simulation field in Z direction

GoalDepthMm int
Goal depth of current simulation field（ length in X

direction）

GoalWidthMm int
Goal width of current simulation field（ length in Z

direction）

ForbiddenZoneLen

gthXMm
int

Length in X direction of penalty area of current simulation

field

ForbiddenZoneLen

gthZMm
int

Length in Z direction of penalty area of current simulation

field

LeftMm int Coordinate X of left bound of current simulation field

RightMm int Coordinate X of right bound of current simulation field

TopMm int Coordinate Z of upper bound of current simulation field

BottomMm int Coordinate Z of bottom bound of current simulation field

EnvRef.Balls[i].*

PositionMm xna.Vector3 Position of i-th water polo in current simulation mission

RadiusMm int Radius of i-th water polo in current simulation mission

VelocityMmPs float Velocity of i-th water polo in current simulation mission

VelocityDirectionR

ad
float Direction of i-th water polo in current simulation mission

EnvRef.Obstacles

Rect[i].*

PositionMm xna.Vector3
Position of i-th rectangular obstacle of current simulation

mission

LengthMm int
Length of i-th rectangular obstacle of current simulation

mission

WidthMm int
Width of i-th rectangular obstacle of current simulation

mission

DirectionRad float
Direction of i-th rectangular obstacle of current simulation

mission (length orientation)

EnvRef.Obstacles

Round[i].*

PositionMm xna.Vector3
Position of i-th round obstacle of current simulation

mission

16

Member name Type Meaning

RadiusMm int
Radius of i-th rectangular obstacle of current simulation

mission

HtMissionVariables Hashtable

Hash table of special parameters for strategy in current

simulation mission, with key string as variant name and

value string as variant value

12. The special parameters of particular simulation mission (e.g. flag CompetitionPeriod
indicating current game phase in antagonistic game like water polo 3vs3) can be get by
HtMissionVariables["key name"] and converted to original data type value by Convert.To***
for use. For example, current game phase value of water polo 3vs3 can be get by: int
matchPeriod = Convert.ToInt32(mission.HtMissionVariables["CompetitionPeriod"]). The
special parameters of each particular simulation mission that are transmitted to strategy are
determined by simulation mission designers and their meaning and use are described in
simulation mission rule document.

4.3.3. About Debugging

1. The strategy can be debugged under Local mode first for basic logistics and then take a
fitness test and parameter amendment under Remote mode. The game strategy must be tested
under Remote mode. The strategy for antagonistic game must test whether it works as
expected after two team change ends during halftime.

2. For convenience sake, it is needed to set Debug Start action Start external program option
as %URWPGSim2D%\URWPGSim2D\bin\URWPGSim2DServer.exe for debugging under
Local mode and %URWPGSim2D%\URWPGSim2D\bin\URWPGSim2DClient.exe for
debugging under Remote mode in Project Properties. Note: the code downloaded from SVN
server does not include these two files under bin folder, so do other original components
except URWPGSim2D.Core.dll before clicking Build Solution first.

3. Since one Solution can only set one launching game with several strategy Projects, it is
necessary to right-click strategy Project name for debugging and select Debug Start new
instance.

4. To debug the strategy for simulation mission including 2 or more teams, it is necessary to
generate one or more backup strategy. The debugged strategy can only be loaded for one
team per time. Otherwise, the breakpoint in strategy code will recur several times in one
period and go against tracking.

5. When the error like failing to find components occurs in debugging, the quoting of debugged
projects should be checked first. If it is incorrect, you should delete it and add another
from %URWPGSim2D%\URWPGSim2D\bin\ (right-click “quoting”, select “add quoting”

”browse”, find the aforementioned folder and choose correct program assembly). If the
version of main program has been updated and dll files of strategy have been regenerated, it

17

may require deleting the original quoting and add again, which depends on whether the
original folder of quoting program assembly is the same as new one.

5. Standard Function

5.1. PoseToPose Function

The function belongs to Helpers type (static type) of URWPGSim2D.StrategyHelper
namespace.

5.1.1. Introduction of Function

PoseToPose function is the control function from one pose to another which can realize the
precise control of simulation robotic fish from current pose to target pose. The control of
PoseToPose can be devided to 2 stages. In the first stage, the fish is controlled to swim to
temporary target point rapidly. In the second stage, the fish is controlled to swim to target point.
Therein, temporary target point is on the reverse extension line and the distance threshold can be
controlled.

5.1.2. Description of Function Parameters

5.1.2.1. Function Prototype

public static void PoseToPose(ref Decision decision, RoboFish fish, xna.Vector3 destPtMm, float destDirRad,

float angThreshold, float disThreshold, int msPerPeriod, ref int times)

5.1.2.2. Parameter Description Table

Table 5-1 PoseToPose function parameter description table

Parameter Name Parameter Type Parameter Description

Decision ref Decision
Decision variant value (output parameter) computed by

PoseToPose

Fish RoboFish Simulation robotic fish object which runs PoseToPose

destPtMm xna.Vector3 Coordinates of target position (target point)

destDirRad Float Radian value of target orientation（target orientation）

angThreshold Float

Upper limit of key controlling parameter (absolute value

of the difference between middle direction and orientation

of fish body), 30 degrees in default

disThreshold Float
Threshold of key controlling parameter (distance between

temporary target point and final target point)

msPerPeriod Int
Milliseconds of each simulation period, i.e.

mission.CommonPara.MsPerPeriod

Times ref int See 5.1.3（output parameter）

5.1.3. Calling Method

1. Add integer member variant of Strategy type in codes with the initial value 0 as the input of
last parameter times when calling PoseToPose function, e.g. int times, which is used to

18

record the time in stage 2 of algorithm.

2. In order to call PoseToPose in member function (method) of Strategy type in codes, the
following calling codes with recommended parameters can be used and adjusted according to
the actual debugging situation.

StrategyHelper.Helpers.PoseToPose(ref decisions[i], mission.TeamsRef[teamId].Fishes[i], targetPoint,

targetDirection, 30.0f, 8 * b.RadiusMm, mission.CommonPara.MsPerPeriod, ref times);

3. The caller needs to decide whether the pose control target is reached by oneself. After
reaching pose control target once, you need to initial the input invariant (member variant of
Strategy type) of parameter times defined in the first step for one more calling.

5.2. Dribble Function

The function belongs to Helpers type (static type) of URWPGSim2D.StrategyHelper
namespace.

5.2.1. Introduction of Function

Dribble function is used to realize the dribbling control of simulation robotic fish in some
games.

5.2.2. Description of Function Parameters

5.2.2.1. Function Prototype

public static void Dribble(ref Decision decision, RoboFish fish, xna.Vector3 destPtMm, float destDirRad,float

angleTheta1, float angleTheta2, float disThreshold, int VCode1, int VCode2, int periods, int msPerPeriod, bool

flag)

5.2.2.2. Parameter Description Table

Table 5-2 Dribble function parameter description table

Parameter Name Parameter Type Parameter Description

Decision ref Decision
Decision variant value (output parameter) computed by

Dribble

Fish RoboFish Simulation robotic fish object which runs Dribble

destPtMm xna.Vector3 Coordinates of target position (target point)

destDirRad float Radian value of target orientation（target orientation）

angleTheta1 float

Fisrt threshold of the angle between fish body and target

orientation. Below the threshold, a reasonable speed gear

will be given to simulation robotic fish. (see the

description of parameter disThreshold)

angleTheta2 float

Second threshold of the angle between fish body and

target orientation. Below the threshold, simulation robotic

fish will swim straight. Above the threshold, simulation

robotic fish will change swimming direction.

disThreshold float Threshold of distance. Above the threshold, simulation

19

20

Parameter Name Parameter Type Parameter Description

robotic fish will swim with speed gear VCode1. Below the

threshold, simulation robotic fish will swim with speed

gear VCode2.

VCode1 int Swimming gear 1 (6 gears in default)

VCode2 int Swimming gear 2 (4 gears in default)

Periods int

Number of periods needed for switching between speed

and turning gear with recommended value range from 5 to

20 which can avoid robotic fish from turning too much.

msPerPeriod int
Milliseconds of each simulation period, i.e.

mission.CommonPara.MsPerPeriod

Flag bool

Coordinate standard of robotic fish, with the value true as

PositionMm, i.e. the center of fish body and false as

PolygonVertices[0], i.e. fish head.

5.2.3. Calling Method

In order to call Dribble in member function (method) of Strategy type in codes, the following
calling codes with recommended parameters can be used and adjusted according to the actual
debugging situation.

StrategyHelper.Helpers.Dribble(ref decisions[i], mission.TeamsRef[teamId].Fishes[i], targetPoint, targetDirection,

5, 10, 150, 6, 4, 15, 100, true);

	1. Summary
	1.1. Target Reader
	1.2. Glossary

	2. Development Environment
	2.1. Hardware Environment
	2.2. Software Environment
	2.3. Set Up Standard Development Environment
	2.4. Start Development
	2.5. Supplement

	3. General Design
	3.1. Functional Design
	3.2. VS2008 Solution & Project Struction
	3.3. Overall Structure
	3.4. Server Structure
	3.4.1. Simulation Mission As the Center
	3.4.2. Simulation Period As the Main Line

	3.5. Version Control
	3.5.1. Source Code Management
	3.5.2. Product Management

	4. Strategy Program
	4.1. What is Strategy
	4.2. How to Call the Strategy
	4.2.1. Local Mode
	4.2.2. Remote Mode
	4.2.3. Asynchronous Call

	4.3. Program Guide
	4.3.1. About Program
	4.3.2. About Business
	4.3.3. About Debugging

	5. Standard Function
	5.1. PoseToPose Function
	5.1.1. Introduction of Function
	5.1.2. Description of Function Parameters
	5.1.2.1. Function Prototype
	5.1.2.2. Parameter Description Table

	5.1.3. Calling Method

	5.2. Dribble Function
	5.2.1. Introduction of Function
	5.2.2. Description of Function Parameters
	5.2.2.1. Function Prototype
	5.2.2.2. Parameter Description Table

	5.2.3. Calling Method

